Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(4): 543-551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278984

RESUMO

Silicon is a promising anode material due to its high theoretical specific capacity, low lithiation potential and low lithium dendrite risk. Yet, the electrochemical performance of silicon anodes in solid-state batteries is still poor (for example, low actual specific capacity and fast capacity decay), hindering practical applications. Here the chemo-mechanical failure mechanisms of composite Si/Li6PS5Cl and solid-electrolyte-free silicon anodes are revealed by combining structural and chemical characterizations with theoretical simulations. The growth of the solid electrolyte interphase at the Si|Li6PS5Cl interface causes severe resistance increase in composite anodes, explaining their fast capacity decay. Solid-electrolyte-free silicon anodes show sufficient ionic and electronic conductivities, enabling a high specific capacity. However, microscale void formation during delithiation causes larger mechanical stress at the two-dimensional interfaces of these anodes than in composite anodes. Understanding these chemo-mechanical failure mechanisms of different anode architectures and the role of interphase formation helps to provide guidelines for the design of improved electrode materials.

2.
Sci Rep ; 14(1): 1320, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225247

RESUMO

We report the precise measurement of electric fields in nanostructures, and high-contrast imaging of soft matter at ultralow electron doses by transmission electron microscopy (TEM). In particular, a versatile method based on the theorem of reciprocity is introduced to enable differential phase contrast imaging and ptychography in conventional, plane-wave illumination TEM. This is realised by a series of TEM images acquired under different tilts, thereby introducing the sampling rate in reciprocal space as a tuneable parameter, in contrast to momentum-resolved scanning techniques. First, the electric field of a p-n junction in GaAs is imaged. Second, low-dose, in-focus ptychographic and DPC characterisation of Kagome pores in weakly scattering covalent organic frameworks is demonstrated by using a precessing electron beam in combination with a direct electron detector. The approach offers utmost flexibility to record relevant spatial frequencies selectively, while acquisition times and dose requirements are significantly reduced compared to the 4D-STEM counterpart.

3.
Ultramicroscopy ; 257: 113904, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061278

RESUMO

Interfacial phenomena between active cathode materials and solid electrolytes play an important role in the function of solid-state batteries. (S)TEM imaging can give valuable insight into the atomic structure and composition at the various interfaces, yet the preparation of TEM specimen by FIB (focused ion beam) is challenging for loosely bound samples like composites, as they easily break apart during conventional preparation routines. We propose a novel preparation method that uses a frame made of deposition layers from the FIB's gas injection system to prevent the sample from breaking apart. This technique can of course be also applied to other loosely bound samples, not only those in the field of batteries.

4.
Small Methods ; : e2301079, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133519

RESUMO

In situ transmission electron microscopy (TEM) observations of the metal-organic vapor phase epitaxy (MOVPE) growth promise to enhance the understanding of this complex process. However, a new experimental approach is required, capable of live imaging at the atomic scale and simultaneously reflecting this method's elevated pressures. To this end, a closed gas cell in situ TEM setup is used as a micrometer-scaled MOVPE reactor to grow GaP using tertiary butyl phosphine (TBP) and trimethyl gallium (TMGa). To prove the MOVPE reactor ability of the in situ TEM holder, the thermal decomposition of TBP and TMGa is shown to proceed similarly to conventional reactor setups. Decomposition temperatures align with susceptor temperatures in MOVPE machines. Formed products and their temperature decomposition curves are comparable to previous investigations performed in conventional reactors, even though the setups significantly differ. The obtained results are exploited to grow GaP nanostructures via the MOVPE growth process inside the TEM. To prepare a substrate surface for GaP growth, which is highly challenging, Au-catalyzed vapor-liquid-solid-grown GaP nanowires are grown in the reactor cell. Subsequently, the nanowire's sidewalls serve as MOVPE substrates. These results lay the foundation for crystal growth observation under MOVPE conditions in a TEM.

5.
ACS Appl Mater Interfaces ; 15(33): 39513-39522, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37530411

RESUMO

The lack of internal polarization fields in cubic group-III nitrides makes them promising arsenic-free contenders for next-generation high-performance electronic and optoelectronic applications. In particular, cubic InxGa1-xN semiconductor alloys promise band gap tuning across and beyond the visible spectrum, from the near-ultraviolet to the near-infrared. However, realization across the complete composition range has been deemed impossible due to a miscibility gap corresponding to the amber spectral range. In this study, we use plasma-assisted molecular beam epitaxy (PAMBE) to fabricate cubic InxGa1-xN films on c-GaN/AlN/3C-SiC/Si template substrates that overcome this challenge by careful adjustment of the growth conditions, conclusively closing the miscibility gap. X-ray diffraction reveals the composition, phase purity, and strain properties of the InxGa1-xN films. Scanning transmission electron microscopy reveals a CuPt-type ordering on the atomistic scale in highly alloyed films with x(In) ≈ 0.5. Layers with much lower and much higher indium content exhibit statistical distributions of the cations Ga and In. Notably, this CuPt-type ordering results in a spectrally narrower emission compared to that of statistically disordered zincblende materials. The emission energies of the films range from 3.24 to 0.69 eV and feature a quadratic bowing parameter of b = 2.4 eV. In contrast, the LO-like phonon modes that are observed by Raman spectroscopy exhibit a one-mode behavior and shift linearly from c-GaN to c-InN.

8.
Ultramicroscopy ; 253: 113821, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562100

RESUMO

Measuring long-range electric fields by 4-dimensional scanning transmission electron microscopy (4DSTEM) is on the verge to becoming an established method, though quantifying and understanding all underlying processes remains a challenge. To gain further insight into these processes, experimental studies employing the center-of-mass (COM) method of the model system of a GaAs p-n junction are carried out in which three ranges of the semi-convergence angle α are identified, with an intermediate one where measuring the built-in potential Vbi is not feasible. STEM multislice simulations including both atomic and nm-scale fields prove that this intermediate range begins once diffraction disks start overlapping with the undiffracted beam. The range ends when the diffraction disks' intensities become so low that they do not affect the measurement significantly anymore and when high-intensity diffractions overlap the center disk completely. From simulations without influence of atoms it is concluded that measuring Vbi has advantages over measuring the electric-field strength, as the potential difference does neither show a significant dependence on the beam size, nor on the specimen thickness.

9.
Small Methods ; 7(9): e2300453, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246264

RESUMO

Characterizing long-range electric fields and built-in potentials in functional materials at nano to micrometer scales is of supreme importance for optimizing devices, e.g., the functionality of semiconductor hetero-structures or battery materials is determined by the electric fields established at interfaces which can also vary spatially. In this study, momentum-resolved four-dimensional scanning transmission electron microscopy (4D-STEM) is proposed for the quantification of these potentials and the optimization steps required to reach quantitative agreement with simulations for the GaAs/AlAs hetero-junction model system are shown. Using STEM the differences in the mean inner potentials (∆MIP) of two materials forming an interface and resulting dynamic diffraction effects have to be considered. This study shows that the measurement quality is significantly improved by precession, energy filtering and a off-zone-axis alignment of the specimen. Complementary simulations yielding a ∆MIP of 1.3 V confirm that the potential drop due to charge transfer at the intrinsic interface is ≈0.1 V, in agreement with experimental and theoretical values found in literture. These results show the feasibility of accurately measuring built-in potentials across hetero-interfaces of real device structures and its promising application for more complex interfaces of other polycrystalline materials on the nanometer scale.

10.
J Comput Chem ; 44(7): 843-856, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36507710

RESUMO

A class of adamantane-like molecular materials attracts attention because they exhibit an extreme non-linear optical response and emit a broad white-light spectrum after illumination with a continuous-wave infrared laser source. According to recent studies, not only the nature of the cluster molecules, but also the macroscopic structure of the materials determines their non-linear optical properties. Here we present a systematic study of cluster dimers of the compounds AdR4 and [(RT)4 S6 ] (T = Si, Ge, Sn) with R = methyl, phenyl or 1-naphthyl to gain fundamental knowledge about the interactions in the materials. For all compounds, a similar type of dimer structures with a staggered arrangement of substituents was determined as the energetically most favorable configuration. The binding energy between the dimers, determined by including London dispersion interactions, increases with the size of the core and the substituents. The cluster interactions can be classified as substituent-substituent-dominated (small cores, large substituents) or core-core-dominated (large cores, small substituents). Among various possible dimer conformers, those with small core-core distances are energetically preferred. Trimer and tetramer clusters display similar trends regarding the minimal core-core distances and binding energies. The much lower energy barrier determined for the rotation of substituents as compared to the rotation of the cluster dimers past each other indicates that the rotation of substituents more easily leads to different conformers in the material. Thus, understanding the interaction of the cluster dimers allows an initial assessment of the interactions in the materials.

11.
Small ; 19(4): e2205508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36433828

RESUMO

In lithium ion batteries (LIBs), the layered cathode materials of composition LiNi1- x - y Cox Mny O2  are critical for achieving high energy densities. A high nickel content (>80%) provides an attractive balance between high energy density, long lifetime, and low cost. Consequently, Ni-rich layered oxides cathode active materials (CAMs) are in high demand, and the importance of LiNiO2 (LNO) as limiting case, is hence paramount. However, achieving perfect stoichiometry is a challenge resulting in various structural issues, which successively impact physicochemical properties and result in the capacity fade of LIBs. To better understand defect formation in LNO, the role of the Ni(OH)2  precursor morphology in the synthesis of LNO requires in-depth investigation. By employing aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction, a direct observation of defects in the Ni(OH)2  precursor preparedis reported and the ex situ structural evolution from the precursor to the end product is monitored. During synthesis, the layered Ni(OH)2  structure transforms to partially lithiated (non-layered) NiO and finally to layered LNO. The results suggest that the defects observed in commercially relevant CAMs originate to a large extent from the precursors, hence care must be taken in tuning the co-precipitation parameters to synthesize defect-free Ni-rich layered oxides CAMs.

12.
Opt Express ; 30(13): 23544-23555, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225031

RESUMO

We report on new THz electromagnetic emission mechanism from deformational coupling of acoustic (AC) phonons with electrons in the propagation medium of non-polar Si. The epicenters of the AC phonon pulses are the surface and interface of a GaP transducer layer whose thickness (d) is varied in nanoscale from 16 to 45 nm. The propagating AC pulses locally modulate the bandgap, which in turn generates a train of electric field pulses, inducing an abrupt drift motion at the depletion edge of Si. The fairly time-delayed THz bursts, centered at different times (t1T H z, t2T H z, and t3T H z), are concurrently emitted only when a series of AC pulses reach the point of the depletion edge of Si, even without any piezoelectricity. The analysis on the observed peak emission amplitudes is consistent with calculations based on the combined effects of mobile charge carrier density and AC-phonon-induced local deformation, which recapitulates the role of deformational potential coupling in THz wave emission in a formulatively distinct manner from piezoelectric counterpart.

13.
ACS Omega ; 6(42): 28229-28241, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723020

RESUMO

Tertiarybutylarsine (TBAs) and tertiarybutylphosphine (TBP) are getting more and more established as group V precursors for the growth of V/III semiconductors by metal organic vapor phase epitaxy (MOVPE). Due to this development, the thermal decomposition of these precursors was studied during the growth of GaAs and GaP utilizing the Ga precursors, trimethylgallium (TMGa), triethylgallium (TEGa), and tritertiarybutylgallium (TTBGa), in a horizontal AIXTRON AIX 200 GFR MOVPE system. The decomposition and reaction products were measured in line with a real-time Fourier transform quadrupole ion trap mass spectrometer from Carl Zeiss SMT GmbH. The decomposition temperatures and the related activation energies were determined for all the mentioned precursors under comparable reactor conditions. The decomposition curves suggest, on the one hand, a catalytic effect of the GaAs surface on the decomposition of TBAs. On the other hand, the decomposition products indicate alkyl exchange as a relevant step during the bimolecular decomposition of TBAs and TBP with the Ga precursors TMGa, TEGa, and TTBGa. The catalytic reaction reduces the decomposition temperature of TBAs and TBP by up to 200 °C. In addition, for the growth of GaAs with TBAs and TEGa and for the growth of GaP with TBP and TEGa, a significant decrease of the decomposition temperature with an increasing V/III ratio is observed. This behavior, which is related to an alkyl exchange reaction, gives insights into the low-temperature growth of GaAs and GaP and is converted into an effective V/III ratio. Finally, the growth of GaAs with TTBGa and TBAs is realized at 300 °C below the unimolecular decomposition temperature of TBAs, underlining the catalytic effect of the GaAs surface. Altering the growth surface with trimethylbismuth led to the prevention of the catalytic effect.

14.
ACS Appl Mater Interfaces ; 13(40): 47488-47498, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606719

RESUMO

All solid-state batteries offer the possibility of increased safety at potentially higher energy densities compared to conventional lithium-ion batteries. In an all-ceramic oxide battery, the composite cathode consists of at least one ion-conducting solid electrolyte and an active material, which are typically densified by sintering. In this study, the reaction of the solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) and the active material LiNi0.6Co0.2Mn0.2O2 (NCM622) is investigated by cosintering at temperatures between 550 and 650 °C. The characterization of the composites and the reaction layer is performed by optical dilatometry, X-ray diffractometry, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy, time-of-flight secondary ion mass spectrometry, as well as scanning transmission electron microscopy (STEM). Even at low sintering temperatures, elemental diffusion occurs between the two phases, which leads to the formation of secondary phases and decomposition reactions of the active material and the solid electrolyte. As a result, the densification of the composite is prevented and ion-conducting paths between individual particles cannot be formed. Based on the experimental results, a mechanism of the reactions in cosintered LATP and NCM622 oxide composite cathodes is suggested.

15.
Phys Chem Chem Phys ; 23(11): 6725-6737, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33710207

RESUMO

Atomic layer deposition (ALD) derived ultrathin conformal Al2O3 coating has been identified as an effective strategy for enhancing the electrochemical performance of Ni-rich LiNixCoyMnzO2 (NCM; 0 ≤x, y, z < 1) based cathode active materials (CAM) in Li-ion batteries. However, there is still a need to better understand the beneficial effect of ALD derived surface coatings on the performance of NCM based composite cathodes. In this work, we applied and optimized a low-temperature ALD derived Al2O3 coating on a series of Ni-rich NCM-based (NCM622, NCM71.51.5 and NCM811) ready-to-use composite cathodes and investigated the effect of coating on the surface conductivity of the electrode as well as its electrochemical performance. A highly uniform and conformal coating was successfully achieved on all three different cathode compositions under the same ALD deposition conditions. All the coated cathodes were found to exhibit an improved electrochemical performance during long-term cycling under moderate cycling conditions. The improvement in the electrochemical performance after Al2O3 coating is attributed to the suppression of parasitic side reactions between the electrode and the electrolyte during cycling. Furthermore, conductive atomic force microscopy (C-AFM) was performed on the electrode surface as a non-destructive technique to determine the difference in surface morphology and conductivity between uncoated and coated electrodes before and after cycling. C-AFM measurements on pristine cathodes before cycling allow clear separation between the conductive carbon additives and the embedded NCM secondary particles, which show an electrically insulating behavior. More importantly, the measurements reveal that the ALD-derived Al2O3 coating with an optimized thickness is thin enough to retain the original conduction properties of the coated electrodes, while thicker coating layers are insulating resulting in a worse cycling performance. After cycling, the surface conductivity of the coated electrodes is maintained, while in the case of uncoated electrodes the surface conductivity is completely suppressed confirming the formation of an insulating cathode electrolyte interface due to the parasitic side reactions. The results not only show the possibilities of C-AFM as a non-destructive evaluation of the surface properties, but also reveal that an optimized coating, which preserves the conductive properties of the electrode surface, is a crucial factor for stabilising the long-term battery performance.

16.
Nano Lett ; 21(5): 2018-2025, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621104

RESUMO

Most of today's electronic devices, like solar cells and batteries, are based on nanometer-scale built-in electric fields. Accordingly, characterization of fields at such small scales has become an important task in the optimization of these devices. In this study, with GaAs-based p-n junctions as the example, key characteristics such as doping concentrations, polarity, and the depletion width are derived quantitatively using four-dimensional scanning transmission electron microscopy (4DSTEM). The built-in electric fields are determined by the shift they introduce to the center-of-mass of electron diffraction patterns at subnanometer spatial resolution. The method is applied successfully to characterize two p-n junctions with different doping concentrations. This highlights the potential of this method to directly visualize intentional or unintentional nanoscale electric fields in real-life devices, e.g., batteries, transistors, and solar cells.

17.
Ultramicroscopy ; 221: 113175, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383361

RESUMO

The angle-resolved electron scattering is investigated in scanning-transmission electron microscopy (STEM) using a motorised iris aperture placed above a conventional annular detector. The electron intensity scattered into various angle ranges is compared with simulations that were carried out in the frozen-lattice approximation. As figure of merit for the agreement of experiment and simulation we evaluate the specimen thickness which is compared with the thickness obtained from position-averaged convergent beam electron diffraction (PACBED). We find deviations whose strengths depend on the angular range of the detected electrons. As possible sources of error we investigate, for example, the influences of amorphous surface layers, inelastic scattering (plasmon excitation), phonon-correlation within the frozen-lattice approach, and distortions in the diffraction plane of the microscope. The evaluation is performed for four experimental thicknesses and two angle-resolved STEM series under different camera lengths. The results clearly show that especially for scattering angles below 50 mrad, it is mandatory that the simulations take scattering effects into account which are usually neglected for simulating high-angle scattering. Most influences predominantly affect the low-angle range, but also high scattering angles can be affected (e.g. by amorphous surface covering).

18.
ACS Appl Mater Interfaces ; 12(51): 57047-57054, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296166

RESUMO

The thermal stability of cathode active materials (CAMs) is of major importance for the safety of lithium-ion batteries (LIBs). A thorough understanding of how commercially viable layered oxide CAMs behave at the atomic length scale upon heating is indispensable for the further development of LIBs. Here, structural changes of Li(Ni0.85Co0.15Mn0.05)O2 (NCM851005) at elevated temperatures are studied by in situ aberration-corrected scanning transmission electron microscopy (AC-STEM). Heating NCM851005 inside the microscope under vacuum conditions enables us to observe phase transitions and other structural changes at high spatial resolutions. This has been primarily possible by establishing low-dose electron beam conditions in STEM. Specific focus is put on the evolution of inherent nanopore defects found in the primary grains, which are believed to play an important role in LIB degradation. The onset temperature of structural changes is found to be ∼175 °C, resulting in phase transformation from a layered to a rock-salt-like structure, especially at the internal interfaces, and increasing intragrain inhomogeneity. The reducing environment and heat application lead to the formation and subsequent densification of {003}- and {014}-type facets. In the light of these results, postsynthesis electrode drying processes applied under reducing environment and heat, for example, in the preparation of solid-state batteries, should be re-examined carefully.

19.
Sci Rep ; 10(1): 17890, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087734

RESUMO

Scanning transmission electron microscopy (STEM) allows to gain quantitative information on the atomic-scale structure and composition of materials, satisfying one of todays major needs in the development of novel nanoscale devices. The aim of this study is to quantify the impact of inelastic, i.e. plasmon excitations (PE), on the angular dependence of STEM intensities and answer the question whether these excitations are responsible for a drastic mismatch between experiments and contemporary image simulations observed at scattering angles below [Formula: see text] 40 mrad. For the two materials silicon and platinum, the angular dependencies of elastic and inelastic scattering are investigated. We utilize energy filtering in two complementary microscopes, which are representative for the systems used for quantitative STEM, to form position-averaged diffraction patterns as well as atomically resolved 4D STEM data sets for different energy ranges. The resulting five-dimensional data are used to elucidate the distinct features in real and momentum space for different energy losses. We find different angular distributions for the elastic and inelastic scattering, resulting in an increased low-angle intensity ([Formula: see text] 10-40 mrad). The ratio of inelastic/elastic scattering increases with rising sample thickness, while the general shape of the angular dependency is maintained. Moreover, the ratio increases with the distance to an atomic column in the low-angle regime. Since PE are usually neglected in image simulations, consequently the experimental intensity is underestimated at these angles, which especially affects bright field or low-angle annular dark field imaging. The high-angle regime, however, is unaffected. In addition, we find negligible impact of inelastic scattering on first-moment imaging in momentum-resolved STEM, which is important for STEM techniques to measure internal electric fields in functional nanostructures. To resolve the discrepancies between experiment and simulation, we present an adopted simulation scheme including PE. This study highlights the necessity to take into account PE to achieve quantitative agreement between simulation and experiment. Besides solving the fundamental question of missing physics in established simulations, this finally allows for the quantitative evaluation of low-angle scattering, which contains valuable information about the material investigated.

20.
Cryst Growth Des ; 20(5): 2914-2920, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33828439

RESUMO

We present an experimental and theoretical analysis of the formation of nanovoids within Si microcrystals epitaxially grown on Si patterned substrates. The growth conditions leading to the nucleation of nanovoids have been highlighted, and the roles played by the deposition rate, substrate temperature, and substrate pattern geometry are identified. By combining various scanning and transmission electron microscopy techniques, it has been possible to link the appearance pits of a few hundred nanometer width at the microcrystal surface with the formation of nanovoids within the crystal volume. A phase-field model, including surface diffusion and the flux of incoming material with shadowing effects, reproduces the qualitative features of the nanovoid formation thereby opening new perspectives for the bottom-up fabrication of 3D semiconductors microstructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...